## MATH 2050A Midterm solution

1. (a) Let $\epsilon>0$. Take $N \in \mathbb{N}$ such that $N>3 / \epsilon$. If $n>N$,

$$
\begin{aligned}
\left|\frac{n^{2}-1}{n^{2}+n+1}-1\right| & =\left|\frac{n+2}{n^{2}+n+1}\right| \\
& \leq\left|\frac{n}{n^{2}+n+1}\right|+\left|\frac{2}{n^{2}+n+1}\right| \\
& <\left|\frac{n}{n^{2}}\right|+\left|\frac{2}{n}\right| \\
& =\frac{3}{n} \\
& \leq \frac{3}{N} \\
& <\epsilon
\end{aligned}
$$

(b) Since $(n+1)^{2}=n^{2}+2 n+1 \geq 4 n$, for all $n \in \mathbb{N}$,

$$
\frac{\sqrt{n}}{n+1} \leq \frac{1}{2}
$$

Pick $\epsilon_{0}=\frac{1}{2}$. Then for any $n \in \mathbb{N}$,

$$
\begin{aligned}
\left|\frac{\sqrt{n}}{n+1}-1\right| & =1-\frac{\sqrt{n}}{n+1} \\
& \geq \frac{1}{2} \\
& \geq \epsilon_{0}
\end{aligned}
$$

2. $\left(n x_{n}\right)$ is convergent sequence, then there exists $l \in \mathbb{R}$ such that

$$
\lim n x_{n}=l
$$

Let $\epsilon_{0}=1$, there exist $N_{1} \in \mathbb{N}$ such that
if $n \geq N$,

$$
\begin{aligned}
\left|n x_{n}-l\right| & <\epsilon_{0} \\
l-1<n x_{n} & <l+1 \\
\frac{l-1}{n}<x_{n} & <\frac{l+1}{n}
\end{aligned}
$$

Take $C=\max \{|l=1|,|l-1|\}$

$$
\left|x_{n}\right|<\frac{C}{n}
$$

Let $\epsilon>0$. Choose $N_{2} \in \mathbb{N}$ such that $N_{2}>\epsilon / C$
Then, take $N=\max \left\{N_{1}, N_{2}\right\}$. If $n \geq N$

$$
\left|x_{n}-0\right|<\frac{C}{n}<\frac{C}{N_{2}}<\epsilon
$$

3. (a) Let $\left(x_{n}\right)$ be a Cauchy sequence and let $\epsilon=1$.

There exist $H \in \mathbb{N}$ such that if $n \geq H$, then $\left|x_{n}-x_{H}\right|<1$.
Hence, we have $\left|x_{n}\right| \leq\left|x_{H}\right|+1$ for all $n \geq H$.
Then, set $M=\sup \left\{\left|x_{1}\right|,\left|x_{2}\right|, \cdots,\left|x_{H-1}\right|,\left|x_{H}\right|+1\right\}$,
Thus, $\left|x_{n}\right| \leq M$ for all $n \in \mathbb{N}$.
(b) For any $N \in \mathbb{N}$, choose odd number $n>N$. Let $m=n+1, m$ is even number. Take $\epsilon_{0}=1$.

$$
\begin{aligned}
\left|x_{m}-x_{n}\right| & =\left|\frac{2 m+m}{3}-\frac{2 n-n}{3}\right| \\
& =\left|\frac{2+(2 n+1)}{3}\right| \\
& =\frac{3+2 n}{3} \\
& \geq 1 \\
& =\epsilon_{0}
\end{aligned}
$$

4. Let $\epsilon>0$.

Since $\lim r^{n}=0$, there exist $N \in \mathbb{N}$ such that $\left|r^{n}\right|<\epsilon(1-r)$ for all $n>N$.
Take this $N$, if $m>n \geq N$,

$$
\begin{aligned}
\left|y_{m}-y_{n}\right| & \leq\left|y_{m}-y_{m-1}\right|+\left|y_{m-1}-y_{m-2}\right|+\cdots+\left|y_{n+1}-y_{n}\right| \\
& <r^{n}+r^{n-1}+\cdots+r^{m-2}+r^{m-1} \\
& <r^{n}+r^{n+1}+\cdots \\
& =\frac{r^{n}}{1-r} \\
& <\epsilon
\end{aligned}
$$

Then, $\left(y_{n}\right)$ is Cauchy sequence.
Thus, by Cauchy Convergence Criterion, $\left(y_{n}\right)$ is convergent and $\lim y_{n}$ exists.

